Motion Models (cont)

Odometry Motion Model

- the key to computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ for the odometry motion model is to remember that the robot has an internal estimate of its pose

Odometry Motion Model

- the key to computing $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ for the odometry motion model is to remember that the robot has an internal estimate of its pose

robot's internal poses

Odometry Motion Model

- the control vector is made up of the three motions made by the robot

$$
u_{t}=\left(\begin{array}{l}
\delta_{\text {trans }} \\
\delta_{\text {rot1 }} \\
\delta_{\text {rot2 }}
\end{array}\right)
$$

- use the robot's internal pose estimates to compute the δ

$$
\begin{aligned}
& \delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}} \\
& \delta_{\text {rot } 1}=\operatorname{atan2}\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta} \\
& \delta_{\text {rot } 2}=\bar{\theta}^{\prime}-\bar{\theta}-\delta_{\text {rot } 1}
\end{aligned}
$$

Odometry Motion Model

use the true poses to compute the δ

$$
\begin{aligned}
& \hat{\delta}_{t r a n s}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}} \\
& \hat{\delta}_{r o t 1}=\operatorname{atan} 2\left(y^{\prime}-y, x^{\prime}-x\right)-\theta \\
& \hat{\delta}_{r o t 2}=\theta^{\prime}-\theta-\hat{\delta}_{r o t 1}
\end{aligned}
$$

- as with the velocity motion model, we have to solve the inverse kinematics problem here

Odometry Motion Model

- recall the noise model

$$
\begin{aligned}
\hat{\delta}_{\text {trans }}-\delta_{\text {trans }} & =\varepsilon_{\alpha_{3} \hat{\delta}_{\text {trans }}^{2}+\alpha_{4}\left(\hat{\delta}_{\text {rot1 }}^{2}+\hat{\delta}_{\text {rot } 2}^{2}\right)} \\
\hat{\delta}_{\text {rot1 } 1}-\delta_{\text {rot1 } 1} & =\varepsilon_{\alpha_{1} \hat{\delta}_{\text {rot1 }}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}} \\
\hat{\delta}_{\text {rot2 } 2}-\delta_{\text {rot } 2} & =\varepsilon_{\alpha_{1} \hat{\delta}_{\text {rot2 } 2}^{2}+\alpha_{2} \hat{\delta}_{\text {rans }}^{2}}
\end{aligned}
$$

which makes it easy to compute the probabilities of observing the differences in the δ

$$
\begin{aligned}
& p_{1}=\operatorname{prob}\left(\hat{\delta}_{\text {trans }}-\delta_{\text {trans }}, \alpha_{3} \hat{\delta}_{\text {trans }}^{2}+\alpha_{4}\left(\hat{\delta}_{\text {rot } 1}^{2}+\hat{\delta}_{\text {rot } 2}^{2}\right)\right) \\
& p_{2}=\operatorname{prob}\left(\hat{\delta}_{\text {rot } 1}-\delta_{\text {rot } 1}, \alpha_{1} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right) \\
& p_{3}=\operatorname{prob}\left(\hat{\delta}_{\text {rot } 2}-\delta_{\text {rot } 2}, \alpha_{1} \hat{\delta}_{\text {rot } 2}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)
\end{aligned}
$$

Calculating the Posterior Given x, x, and u

I. Algorithm motion_model_odometry $\left(\mathbf{x}, \mathrm{x}^{\prime}, \mathrm{u}\right)$
2. $\delta_{\text {trans }}=\sqrt{\left(\bar{x}^{\prime}-\bar{x}\right)^{2}+\left(\bar{y}^{\prime}-\bar{y}\right)^{2}}$
3. $\delta_{\text {rot1 }}=\operatorname{atan} 2\left(\bar{y}^{\prime}-\bar{y}, \bar{x}^{\prime}-\bar{x}\right)-\bar{\theta}$

4. $\delta_{\text {rot } 2}=\bar{\theta}^{\prime}-\bar{\theta}-\delta_{\text {rot } 1}$
5. $\hat{\delta}_{\text {trans }}=\sqrt{\left(x^{\prime}-x\right)^{2}+\left(y^{\prime}-y\right)^{2}}$
6. $\hat{\delta}_{\text {rot1 }}=\operatorname{atan} 2\left(y^{\prime}-y, x^{\prime}-x\right)-\bar{\theta}$

7. $\hat{\delta}_{\text {rot } 2}=\theta^{\prime}-\theta-\hat{\delta}_{\text {rot } 1}$
8. $p_{1}=\operatorname{prob}\left(\delta_{\text {rot1 }}-\hat{\delta}_{\text {rot1 }}, \alpha_{1} \hat{\delta}_{\text {roti }}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
9. $p_{2}=\operatorname{prob}\left(\delta_{\text {trans }}-\hat{\delta}_{\text {trans }}, \alpha_{3} \hat{\delta}_{\text {trans }}^{2}+\alpha_{4}\left(\hat{\delta}_{\text {rot1 }}^{2}+\hat{\delta}_{\text {rot2 }}^{2}\right)\right)$
10. $p_{3}=\operatorname{prob}\left(\delta_{\text {rot2 } 2}-\hat{\delta}_{\text {rot2 } 2}, \alpha_{1} \hat{\delta}_{\text {rot2 }}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}\right)$
II. return $p_{1} \cdot p_{2} \cdot p_{3}$

Recap

- velocity motion model
- control variables were linear velocity, angular velocity about ICC, and final angular velocity about robot center

Recap

- odometric motion model
> control variables were derived from odometry
- initial rotation, translation, final rotation

Recap

- for both models we assumed the control inputs u_{t} were noisy
- the noise models were assumed to be zero-mean additive with a specified variance

$$
\begin{aligned}
& \binom{\hat{v}}{\hat{\omega}}=\binom{v}{\omega}+\binom{v_{\text {noise }}}{\omega_{\text {noise }}} \\
& \begin{array}{c}
\text { actual commanded noise } \\
\text { velocity velocity }
\end{array} \\
& \operatorname{var}\left(v_{\text {noise }}\right)=\alpha_{1} v^{2}+\alpha_{2} \omega^{2} \\
& \operatorname{var}\left(\omega_{\text {noise }}\right)=\alpha_{3} v^{2}+\alpha_{4} \omega^{2}
\end{aligned}
$$

Recap

- for both models we assumed the control inputs u_{t} were noisy
- the noise models were assumed to be zero-mean additive with a specified variance

$$
\begin{aligned}
& \left(\begin{array}{c}
\hat{\delta}_{\text {trans }} \\
\hat{\delta}_{\text {rot1 }} \\
\hat{\delta}_{\text {rot } 2}
\end{array}\right)=\left(\begin{array}{c}
\delta_{\text {trans }} \\
\delta_{\text {rot1 }} \\
\delta_{\text {rot } 2}
\end{array}\right)+\left(\begin{array}{c}
\delta_{\text {trans,noise }} \\
\delta_{\text {rot1,noise }} \\
\delta_{\text {rot } 2, n o i s e ~}
\end{array}\right) \\
& \text { actual commanded noise } \\
& \text { motion } \quad \text { motion }
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{var}\left(\delta_{\text {trans,noise }}\right)=\alpha_{3} \hat{\delta}_{t r a n s}^{2}+\alpha_{4}\left(\hat{\delta}_{r o t 1}^{2}+\hat{\delta}_{\text {rot } 2}^{2}\right) \\
& \operatorname{var}\left(\delta_{\text {rot } 1, n o i s e}\right)=\alpha_{1} \hat{\delta}_{\text {rot } 1}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2} \\
& \operatorname{var}\left(\delta_{\text {rot } 2, n o i s e}\right)=\alpha_{1} \hat{\delta}_{r o t 2}^{2}+\alpha_{2} \hat{\delta}_{\text {trans }}^{2}
\end{aligned}
$$

Recap

- for both models we studied how to derive $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$
b given

> x_{t-1}	current pose
$>u_{t}$	control input
$>x_{t}$	new pose

find the probability density that the new pose is generated by the current pose and control input

- required inverting the motion model to compare the actual with the commanded control parameters

Recap

- for both models we studied how to sample from $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ given
> x_{t-1} current pose
> $u_{t} \quad$ control input
generate a random new pose x_{t} consistent with the motion model
- sampling from $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ is often easier than calculating $p\left(x_{t} \mid u_{t}, x_{t-1}\right)$ directly because only the forward kinematics are required

Recap

- see section 5.5 of the textbook for an extension of the motion models to include a map of the environment
- in particular notice the numerous assumptions and approximations that need to be made to make the computations tractable
- also, pay attention to the consequences of making such assumptions and approximations

